
www.manaraa.com

Decentralized Trust ManagementMatt Blaze Joan Feigenbaum Jack LacyAT&T ResearchMurray Hill, NJ 07974fmab,jf,lacyg@research.att.comAbstractWe identify the trust management problem as a dis-tinct and important component of security in networkservices. Aspects of the trust management problem in-clude formulating security policies and security creden-tials, determining whether particular sets of creden-tials satisfy the relevant policies, and deferring trust tothird parties. Existing systems that support security innetworked applications, including X.509 and PGP, ad-dress only narrow subsets of the overall trust manage-ment problem and often do so in a manner that is ap-propriate to only one application. This paper presentsa comprehensive approach to trust management, basedon a simple language for specifying trusted actions andtrust relationships. It also describes a prototype imple-mentation of a new trust management system, calledPolicyMaker, that will facilitate the development of se-curity features in a wide range of network services.1. IntroductionThe importance of cryptographic techniques in awide range of network services is universally recog-nized. A service that uses cryptography must accom-modate appropriate notions of users' security policies,their security credentials, and their trust relationships.For example, an electronic banking system must en-able a bank to state that at least k bank o�cers areneeded to approve loans of $1,000,000 or less (a policy),it must enable a bank employee to prove that he canbe counted as 1 out of k approvers (a credential), andit must enable the bank to specify who may issue suchcredentials (a trust relationship).It is our thesis that a coherent intellectual frame-work is needed for the study of security policies, secu-rity credentials, and trust relationships. We refer col-c
 1996. Originally published in Proc. IEEE Conference onSecurity and Privacy, Oakland, CA, May 1996.

lectively to these components of network services as thetrust management problem. Although certain aspectsof trust management are dealt with satisfactorily by ex-isting services in specialized ways that are appropriateto those services (e.g., the PGP secure email systemallows users to create security credentials by bindingtheir IDs to their public keys), the trust managementproblem has not previously been identi�ed as a gen-eral problem and studied in its own right. The goal ofthis paper is to identify the problem and to take the�rst step toward a comprehensive approach to solvingit that is independent of any particular application orservice.To address trust management per se, as opposed tothe security needs of one particular service, we havedeveloped a general framework that can be applied toany service in which cryptography is needed. To facil-itate the use of our approach, we are building a newtype of tool, best described as a trust management sys-tem. Our system, called PolicyMaker, is suitable as atool in the development of services whose main goal isprivacy and authenticity (e.g., a secure communicationsystem) as well as services in which these features aremerely enablers or enhancements (e.g., an electronicshopping system).Our approach to trust management is based on thefollowing general principles.� Uni�ed mechanism: Policies, credentials, andtrust relationships are expressed as programs (orparts of programs) in a \safe" programming lan-guage. Existing systems are forced to treat theseconcepts separately. By providing a common lan-guage for policies, credentials, and relationships,we make it possible for network applications tohandle security in a comprehensive, consistent,and largely transparent manner.� Flexibility: Our system is expressively richenough to support the complex trust relationshipsthat can occur in the very large-scale network ap-

www.manaraa.com

plications currently being developed. At the sametime, simple and standard policies, credentials,and relationships can be expressed succinctly andcomprehensibly. In particular, PGP and X.509\certi�cates" need only trivial modi�cations to beusable in our framework.� Locality of contol: Each party in the networkcan decide in each circumstance whether to acceptthe credentials presented by a second party or, al-ternatively, on which third party it should rely forthe appropriate \certi�cate." By supporting localcontrol of trust relationships, we avoid the needfor the assumption of a globally known, monolithichierarchy of \certifying authorities." Such hierar-chies do not scale beyond single \communities ofinterest" in which trust can be de�ned uncondi-tionally from the top down.� Separation of mechanism from policy: Themechanism for verifying credentials does not de-pend on the credentials themselves or the seman-tics of the applications that use them. This al-lows many di�erent applications with widely vary-ing policy requirements to share a single certi�cateveri�cation infrastructure.
1.1. Review of Existing ApproachesExisting services that use cryptographic techniquesdo not use a \trust management system" as such anddo not identify \trust management" as a problem in itsown right. Usually, implicit notions of trust manage-ment are handled by applications. Most are based onpublic key \certi�cates" in which a trusted third partysigns a specially formed message certifying the identityassociated with a public key. How the certi�ed identityis acted upon, however, is left to the application. Thetwo best known certi�cate systems are those of PGPand X.509.In the PGP system [7], a user generates a(PublicKey; SecretKey) pair that is associated withhis unique ID; usually an ID is of the form(Name;EmailAddress). Keys are stored in keyrecords. A public (resp. secret) key record containsan ID, a public (resp. secret) key, and a timestamp ofwhen the key pair was created. Public keys are storedon public key rings and secret keys on secret key rings.Each user must store and manage a pair of key rings.If user A has a good copy of user B's public-keyrecord, e.g., a copy that he is con�dent (for whateverreason) has not been tampered with since B generatedit, then A can sign this copy and pass it on to user C.A thus acts as an introducer of B to C. A signed key

record is called a key certi�cate,1 and we sometimesuse the word \certify" as a synonym for \sign." Eachuser must tell the PGP system which individuals he orshe trusts as introducers and must certify the introduc-ers' public-key records with his own secret key. More-over, a user may specify the degree of trust that he hasin each introducer; an individual may be designatedunknown, untrusted, marginally trusted, or completelytrusted. Each user stores his trust information on hiskey rings and tunes PGP so that it assigns a valid-ity score to each certi�cate on a key ring and uses thekey in that certi�cate only if the score is high enough.For example, a skeptical user may require two fullytrusted signatures on a public-key record to judge thekey it contains valid, and a less skeptical user may re-quire only one fully trusted signature or two marginallytrusted ones.It is important to note that implicit in PGP is theassumption that the only notion of \security policy"that needs to be supported is that of veri�cation of theID of the sender of a message. Keys rings and degreesof trust allow each user to design his own policy ofthis very limited form. This narrow notion of policy isappropriate to PGP, which is designed speci�cally toprovide secure email for individuals, but it is insu�-cient for the broader range of secure network servicesnow being designed and implemented.Note that A's signature on B's public-key recordshould not be interpreted to mean that A trusts B'spersonal integrity; the right interpretation is ratherthat A believes that the binding of B's identity to thekey in the record is correct. Furthermore, note thattrust is not transitive { the facts that A fully trusts Bas an introducer and that B fully trusts C do not auto-matically imply anything about A's degree of trust inC. As PGP has grown in popularity, a decentralized\web of trust" has emerged. Each individual is re-sponsible for acquiring the public-key certi�cates heneeds and for assigning degrees of trust to the intro-ducers he gets them from. Similarly, each individualmust create his own key pair and disseminate his ownpublic key. This \grass roots" approach rejects the useof o�cial certifying authorities that sign public keys ofindividuals (and those of other certifying authorities)and thereby act as \trust servers" for the users of thosekeys.The X.509 authentication framework attempts tosolve the same part of the trust management prob-1The PGP User's Guide does not have distinct names forsigned and unsigned key records; it refers to both of them as\certi�cates." We have chosen the term \record" to refer to anunsigned unit of key information so that we may use the term\certi�cate" as it is commonly used in the literature.

www.manaraa.com

lem that PGP's introducer mechanism attempts tosolve, namely the need to �nd a suitably trustwor-thy copy of the public key of someone with whomone wants to communicate.2 As in PGP, X.509 cer-ti�cates are signed records that associate users' IDswith their cryptographic keys; X.509 certi�cates con-tain more information than PGP certi�cates, e.g., thenames of the signature schemes used to create themand the time interval in which they are valid (see [3]for details), but their basic purpose is simply the bind-ing of users to keys. However, X.509 di�ers sharplyfrom PGP in its level of centralization of information.While anyone may sign public-key records and act asan introducer in PGP, the X.509 framework postu-lates that everyone will obtain certi�cates from an of-�cial certifying authority (CA). When user A creates a(PublicKey; SecretKey) pair, he has it and the rest ofthe required information certi�ed by one or more CAsand registers the resulting certi�cates with an o�cialdirectory service. If A later wants to communicate se-curely with B, he obtains a certi�cate for B from oneof the directory servers. If A and B have both beencerti�ed by the same CA, the directory server can justsend B's certi�cate to A, who can verify its validity us-ing the public key of this commonCA. If A and B havenot been directly certi�ed by a common CA, then thedirectory service must create a certi�cation path fromA to B. This is a list of the form CA1, cert1, CA2,cert2, : : :, CAn, certn, where certi, 1 � i < n, is acerti�cate of CAi+1 that has been signed by CAi, andcertn is a certi�cate of B. In order to use this path toobtain B's public key, A must know the public key ofCA1, the �rst authority in the path. Thus, the X.509framework rests on the assumption that CAs are orga-nized into a global \certifying authority tree" and thatall users within a \community of interest" have keysthat have been signed by CAs with a common ancestorin this global tree.
1.2. The PolicyMaker ApproachDespite the di�erences in the way the variouscerti�cate-based systems structure trust relationships,they all assume a similar, and, as we shall see, rathercumbersome, trust architecture in the applications thatuse them. In particular, identity-based certi�cates cre-ate an arti�cal layer of indirection between the infor-mation that is certi�ed (which answers the question\who is the holder of this public key?") and the ques-tion that a secure application must answer (\can we2Proposed future versions of X.509 include provisions for a\policy" attribute. However, the responsibility for interpretingthe policy remains outside the scope of the X.509 mechanism [4].

trust this public key for this purpose?").Consider the steps an application must go throughto process a request based on a signed message fromthe holder of a traditional (X.509 or PGP) certi�cate.(Some of these steps might be performed by the oper-ating system or otherwise hidden at a lower layer, as inthe Taos operating system [6], but they are performednevertheless):1. Obtain certi�cates, verify signatures on certi�-cates and on application request, determine publickey of original signer(s).2. Verify that certi�cates are unrevoked.3. Attempt to �nd \trust path" from trusted certi�erto certi�cate of public key in question.4. Extract names from certi�cates.5. Lookup names in database that maps names tothe actions that they are trusted to perform.6. Determine whether requested action is legal, basedon the names extracted from certi�cates andwhether the certi�cation authorities are permittedto authorize such actions according to local policy.7. Proceed if everything appears valid.Observe that the �nal two steps are completely outsidethe scope of the certi�cation framework and must be re-implemented for each application, despite being centralto the problem that certi�cates are supposed to solve.The problem of reliably mapping names to the actionsthey are trusted to perform can represent as much of asecurity risk as the problem of mapping public keys tonames, yet the certi�cates do not help the applicationmap names to actions.A more general system would integrate the speci-�cation of policy with the binding of public keys tothe actions they are trusted to perform. That is, wewould prefer a system in which the steps above couldbe reduced to:1. Obtain certi�cates, verify signatures on certi�-cates and on application request, determine publickey of original signers.2. Verify that certi�cates are unrevoked.3. Submit request, certi�cates, and description of lo-cal policy to local \trust management engine."4. Proceed if approved.

www.manaraa.com

PolicyMaker departs sharply from certi�cate-basedsecurity systems centered on the binding of identitiesto keys in that it allows requesters of secure services toprove directly that they hold credentials that authorizethem to use those services. PolicyMaker binds publickeys to predicates that describe the actions that theyare trusted to sign for, rather than to the names ofthe keyholders as in current systems. Using the Pol-icyMaker language, for example, it is straightforwardto authorize a cryptographic key to sign purchase or-ders for up to $500 by itself or up to $5000 when thetransaction is countersigned by another authorized key.Considerations such as personal identity and organiza-tional level of the approvers, which are only inciden-tally relevant to the question the application is tryingto answer (whether to accept a purchase order), canbe omitted altogther. This ability to express securitycredentials and policies without requiring the applica-tion to manage a mapping between personal identityand authority is especially convenient in systems thatinclude anonymity as a security requirement. For ex-ample, an electronic voting system might require a re-quester to establish that he is a registered voter butmight not be allowed to learn the requester's personalidentity.The expressiveness and generality that make thePolicyMaker language powerful does not come at theprice of insecurity or incomprehensibility: Credentialscan be presented by untrusted parties, because they areused by a \safe" interpreter. Moreover, simple policiesand credentials can be stated simply, and existing PGPor X.509 certi�cates that merely bind keys to IDs canbe used by PolicyMaker with only trivial modi�cations.Trust relationships are also more general and
ex-ible in PolicyMaker than they are in existing sys-tems. Neither the completely anarchic PGP-style webof trust nor the monolithic X.509-style certifying au-thority trees su�ces for many applications that requirethe use of cryptographic keys. In the PGP system,there is no o�cial mechanism for creating, acquiring,and distributing certi�cates { one simply must acquire,by whatever ad hoc means one can devise, and store onone's key ring any certi�cates that are needed. If a re-cipient of a signed message does not have a valid copy ofthe public-key required to verify the signature, then thesignature goes unveri�ed until the recipient can �nd anintroducer who has the certi�cate. Furthermore, thereis no systematic mechanism that allows the sender ofa message to know whether a signature will be accept-able to a recipient. This informal introduction mech-anism may su�ce for personal communication, but itis insu�ciently reliable for commerce. On the otherhand, the single, global certifying authority tree pro-

posed in the X.509 authentication framework, no mat-ter how reliable, is also insu�cient for commerce, be-cause it often forces competing entities to enter intounreasonable trust relationships (albeit possibly indi-rectly). The PolicyMaker system provides a simple lan-guage in which to express conditions under which anindividual or an authority is trusted, as well as con-ditions under which trust may be deferred. Thus, auser may trust certi�cates signed by CA1 and CA2 forsmall transactions but may insist upon certi�cates frommore reliable CA3 for large transactions. One user maytrust certi�cates signed directly by CA1 but not thosesigned by authorities whom CA1 trusts, while anotheruser may trust certi�cates signed by CA2 if CA1 trustsCA2. Similarly, one company may insist that its cus-tomers use CA1's certi�cates, and another may insistupon CA2's certi�cates. There is no assumption of aglobal tree in which all CAs have a common ancestor.In addition to providing a richer language for ex-pressing trust relationships, policies, and credentials,PolicyMaker greatly enhances the potential scope andform of security services by implementing trust man-agement in a distinct software system. It frees the de-signers of such services from the need to handle se-curity completely within applications (as in PGP) orcompletely within the operating system (as in Taos).It also allows implementations of \standard" securitypolicies and credentials developed for one applicationto be reused in others.2. The PolicyMaker Trust ManagementSystem
2.1. Architectural FrameworkThe interface to PolicyMaker re
ects our goal of sep-arating generic mechanism (provided by PolicyMaker)from application-speci�c policy (which is de�ned byeach application). The PolicyMaker service appearsto applications very much like a database query engine.PolicyMaker accepts as input a set of local policy state-ments, a collection of credentials, and a string describ-ing a proposed trusted action. PolicyMaker evaluatesproposed actions by interpreting the policy statementsand credentials. Depending on the credentials and formof the query, it can return either a simple yes/no answeror additional restrictions that wouldmake the proposedaction acceptable. PolicyMaker can either be built intoapplications (through a linked library) or run as an sep-arate \daemon" service.In a simple application, certi�cates (and certi�caterevocation) will be obtained and managed by the ap-plication itself (e.g., in an email system, the sender

www.manaraa.com

of a message might include the appropriate certi�catesin the message itself, which the receiving applicationwould pass directly to PolicyMaker with each query).More complex applications might manage certi�cateswith an external module, whose behavior (e.g., specify-ing certi�cate distribution and revocation authorities)might be speci�ed in terms of PolicyMaker certi�cates.In this paper, however, we focus on the structure andlanguage of the PolicyMaker interpreter itself.Security policies and credentials are de�ned in termsof predicates, called �lters, that are associated withpublic keys. Filters accept or reject action descriptionsbased on what the holders of the corresponding secretkeys are trusted to do. Security policies and creden-tials consist of a binding between a �lter and one ormore public keys. Filters can be written in a varietyof interpreted languages and are discussed in detail be-low. Any public key cryptosystem can be used; signa-ture veri�cation on credentials is handled by externalagents (including, for example, PGP).Trust may also be deferred. Since security informa-tion is often not completely de�ned or available locally,it is frequently necessary to rely on trusted third par-ties to provide additional security information. A localpolicy may defer to third parties who are trusted toissue credentials for others, and it may use �lters thatlimit the extent to which these third parties are trusted.These third parties may themselves defer trust if theydo not have all of the relevant security information, andthey may use �lters. Local policies may set boundson the number of times trust may be deferred. Cre-dentials themselves may also contain �lters that limitthe actions their holder is trusted to perform. Trustis monotonic; each policy statement or credential canonly increase the capabilities granted to others. Anaction is considered acceptable according to local pol-icy if there is a \chain" (de�ned in Section 2.3) fromthe policy to the key(s) requesting the action in whichall the �lters along the chain are satis�ed. This modelsupports very precise and complex trust relationships,as we shall see below.PolicyMaker is not tied to any particular notionof security policy or to any particular authenticationor signature scheme. The form of action descriptions(called action strings) is not determined by or known tothe PolicyMaker system itself. It is up to the applica-tion to generate and interpret the strings and up to the�lters to accept or reject them. Similarly, PolicyMakerdoes not itself verify the signatures with which ac-tion strings are associated, allowing applications to em-ploy virtually any authentication scheme. An applica-tion calls PolicyMaker after it has composed an actionstring and determined the authentication identi�er(s)

(e.g., PGP public keys) from which the requested ac-tion originated. PolicyMaker then determines whetherthe action string is permitted according to the localsecurity policy and credentials.
2.2. The PolicyMaker LanguageThe basic function of a PolicyMaker system is toprocess queries. A query is a request to determinewhether a particular public key (or a sequence of pub-lic keys) is permitted to perform a particular actionaccording to local policy. Queries are of the formkey1; key2; :::; keyn REQUESTS ActionStringAction strings are application-speci�c messages thatdescribe a trusted action requested by a (sequence of)public key(s). The semantics of action strings are de-termined by the applications that generate and inter-pret them and are not part of, or even known to, Policy-Maker. The action strings are interpreted only by thecalling applications and might confer such diverse capa-bilities as signing electronic mailmessages that claim tobe from a particular individual, entering into contractson behalf of an organization, logging into a computersystem, or watching a pay-per-view movie.PolicyMaker processes queries based on trust infor-mation contained in assertions. Assertions confer au-thority on keys. As discussed in the previous section,each assertion binds a predicate, called a �lter, to asequence of public keys, called an authority structure.The simplest �lters are interpreted programs that canaccept or reject action strings. More complex �lters,discussed later, can also generate annotations to actionstrings. Assertions are of the form:Source ASSERTS AuthorityStruct WHERE FilterHere, Source indicates the source of the assertion(either the local policy in the case of policy assertionsor the public key of a third party in the case of signedassertions). AuthorityStruct speci�es the public keyor keys to whom the assertion applies. In the sim-plest case, an authority structure is just a single publickey, but more complex authority structures are alsopossible (such as \at least three of the following eightkeys"; how this is done is discussed below). In thisway, authority structures serve a purpose in our trustmanagement system that is similar to the one servedby \access structures" in a secret-sharing scheme. Fil-ter is the predicate that action strings must satisfy forthe assertion to hold. In other words, each assertionstates that the assertion source trusts the public keysin the authority structure to be associated with action

www.manaraa.com

strings that satisfy the �lter. (Any �lters that applyto the source are recursively applied as well; we discussquery semantics in detail in the next section.)There are two types of PolicyMaker assertions: cer-ti�cates and policies. A certi�cate (also called a signedassertion) is a signed message that binds a particu-lar authority structure to a �lter. A policy also bindsa particular authority structure to a �lter. Policies,however, are not signed; instead, because they origi-nate locally, they are unconditionally accepted locally.They are, semantically and syntactically, really just aspecial case of certi�cates. On any given system, theset of local policies forms the \trust root" of the ma-chine and de�nes the context under which all queriesare evaluated.Authority structures are speci�ed as �lters that ac-cept or reject a list of one or more public keys asso-ciated with an action string. The simplest authoritystructure matches exactly one key, but it is also pos-sible to construct �lters that implement complex re-quirements, such as k-out-of-n threshold schemes.A more precise syntax is given in the Appendix.
2.3. Query semanticsA query is a request for information about the trustthat can be placed in a particular (sequence of) publickey(s). A PolicyMaker system must have at least onepolicy assertion before it can process queries. Typi-cally, there will be several �xed policy assertions and acollection of signed assertions pertaining to the queryat hand.Recall that queries contain one or more keys and anaction string and that assertions contain a source, anauthority structure, and a �lter. From a semantic pointof view, the simplest case is that of a query with one keyk and a set of assertions (both policies and certi�cates)in which all authority structures are just single keys. Inthis case, we may interpret the assertions as a directedgraph D in which the vertices are labeled by keys orpolicy sources and the arcs are labeled by �lters; ifv ! w is an arc in D that is labeled by f , then theremust be an assertion whose source is the label of v,whose authority structure is the label of w, and whose�lter is f . To process a query, the PolicyMaker systemmust �nd a chain v1 ! v2 ! � � � ! vt in D in whichv1 is a local policy source and vt = k. If the querycontains multiple keys k1, : : :, kn and the assertionscontain complex authority structures, then V (D) mustinclude nodes that are labeled by keys, policy sources,and complex authority structures, and the chain v1 !v2 ! � � � ! vt must be such that vt is labeled by anauthority structure that accepts the input (k1; : : : ; kn).

The �lters in certi�cate and policy assertions maytake one of two forms. The simplest form is a programthat simply accepts or rejects action strings. A queryis then satis�ed if the digraph given by these assertionscontains a chain in which all of the �lters accept theaction string.The second �lter form not only accepts or rejectsaction strings but may also append annotations to anotherwise acceptable action string that indicate restric-tions or information not present in the original query.Such assertions allow the querying application to gen-erate a description of the trust capabilities of a keywithout needing to \probe" PolicyMaker with speci�cqueries. For example, in an electronic mail system,a certi�cate for an organizational certifying authoritymight generate an \organization:" line to be addedto action strings where one is not already present.Such assertions contain two �lter programs: a predi-cate, which behaves exactly as the �lters we have al-ready described, and an annotator. Queries involvingassertions that contain annotators are evaluated in twophases. Annotators behave just like predicates but arealso able to emit an annotation that is appended tothe action string. In the �rst pass, the action string ispassed to each annotator along the chain, from policyto query, possibly acquiring more annotations. If allannotators are satis�ed, we run a second pass with thefully annotated action string through the predicates inthe chain. The predicates can either accept or rejectbut cannot add further annotations. This ensures thatany annotations in the previous phase are acceptableto all certi�cates in the chain. If all predicates are sat-is�ed, the annotated action string is returned to theapplication.
2.4. Signature Schemes and Filter LanguagesPolicyMaker does not itself verify signatures onsigned assertions or queries or even process the orig-inal signed messages. Instead, signatures are ver-i�ed by some external program or function (e.g.,PGP, PEM, etc.). The external program guaranteesthat the signature was valid for the identi�ed pub-lic key. The public key passed to the PolicyMakerinterpreter identi�es the program and the key (e.g.,\PGP:0x01234567abcdefa0b1c2d3e4f5a6b7"). Bynot interpreting signatures itself or insisting on a par-ticular signature scheme or format, PolicyMaker makesit very easy to implement a certi�cation authority thatexploits existing infrastructure. For example, it is pos-sible to have chains of trust that consist of a mixtureof X.509 certi�cates (interpreted by a program thatconverts them into PolicyMaker certi�cates) and cer-

www.manaraa.com

ti�cates consisting of simple text messages signed witha program such as PGP.Similarly, PolicyMaker �lters are interpreted pro-grams that are run within a \safe" (I/O and resourcelimited) wrapper. Our implementation currently sup-ports three �lter languages: a regular expression sys-tem (similar to those used in Unix), an internally de-veloped safe version of AWK [1], which we call AWK-WARD, and a macro language that preprocesses intosafe AWK. Other \safe" languages, such as Java [2] orSafe-TCL [5], are easily added as desired.In general, any language that can be safely inter-preted can be used as a �lter language. A distin-guishing feature of our system is that �lters are al-lowed the full complexity and expressiveness of gen-eral programs. Designing and implementing a safe �l-ter language is a much simpler task than designing ageneral-purpose language for remote agents (like Java),however, because �lters generally have no need to is-sue \dangerous" system calls. (There is no need toopen �les or interact with the network, for example.)PolicyMaker wraps the �lter-language interpreter in aresource-limited shell that prevents, e.g., in�nite loopsin �lters from consuming the entire host CPU. Most �l-ters can be assumed to be very simple, so their resourceallocation can be modest.Input to �lters consists of the current action stringand an \environment" containing information aboutthe current context (e.g., date, time, application name,etc.). A �lter can use the environment to enforce con-textual constraints such as expiration times. A �lteralso has access to information about the rest of thechain in which it is being evaluated, which makes itpossible to design certi�cates that limit the degree towhich their authority can be deferred.Although the interpreter for a �lter language is ex-ternal to PolicyMaker itself, the name of the languageis given in assertions and must be known by anyonewho needs to use the assertion. New languages can beadded easily as needed, provided that all recipients ofcerti�cates using the new language are con�gured to in-terpret them. PolicyMaker ignores certi�cates writtenin unknown or unsupported �lter languages.3. Application ExamplesBecause the responsibility for de�ning and interpret-ing action strings rests entirely with the application,the most important consideration in integrating Poli-cyMaker into applications is identifying an appropri-ate \trust language" that captures the required secu-rity semantics. An application's action string languageshould be chosen so that it can be easily generated and

acted upon by the application and so that recognizerscan be easily programmed into policies and certi�cates.In general, it should be possible for a person who un-derstands the application to examine an action stringand understand what it does and to examine assertionsand understand what kinds of actions satisfy them. Inthe sections that follow, we give (informal) examples oftrust languages and assertions that show how Policy-Maker might be integrated into various applications.
3.1. Email systemHere, we propose an electronic mail system for theInternet, in which the security policy requires that weestablish the identities of parties to messages. A natu-ral, if somewhat simplistic, language for describing thetrust properties of messages in such a system derivesfrom the mail delivery headers used to route the mes-sage from sender to recipient. For example, headerscontaining the linesFrom: AliceOrganization: Bob Labsindicate that the message originated from an individualnamed \Alice" who is a�liated with \Bob Labs." Thesecurity policy in such a system aims to ensure that theheaders displayed to the user along with each messageare correct, based on certi�cates from (locally chosen)trusted authorities. It is easy to imagine a language ofaction strings for such a system:From: sender's nameOrganization: sender's organizationGiven such a language, it is also easy to construct apolicy that binds Alice's PGP public key to the abilityto sign messages that claim to originate with Alice:policy ASSERTSpgp:"0xf0012203a4b51677d8090aabb3cdd9e2f"WHERE PREDICATE=regexp:"(From: Alice) &&(Organization: Bob Labs)" ;Because the policy is very simple and can be recog-nized by simple pattern matching, we used a regularexpression for the �lter. The expression simply checksthat the expected �elds are present and contain onlythe expected information. (We might have also addedan ANNOTATOR �lter that contains a simple AWKprogram that �lls in any missing �elds, but we did notin this example.) Note that, with this policy, the au-thority to certify identity is not deferred to a thirdparty; the trust in Alice's key is embedded directlyfrom the policy.In most cases, we would prefer a level of indirection.For example, we might trust the public key belonging

www.manaraa.com

to Bob (the president of Bob Labs) to tell us whichpublic keys belong to his employees. Here, local policywould associate his public key with a predicate thatchecks only that the \Organization:" �eld indeedsays \Bob Labs". Bob can sign predicates on behalf ofhis employees that check their names in the \From:"�eld. These signed predicates are roughly analogous tothe \certi�cates" of the X.509 system; Bob is trustedas the \certi�cate authority" but only with respect tohis own employees.It is simple to set a policy to trust Bob (whose key ispgp:"0x01234567abcdefa0b1c2d3e4f5a6b7") in thisrole:policy ASSERTSpgp:"0x01234567abcdefa0b1c2d3e4f5a6b7"WHEREPREDICATE=regexp:"Organization: Bob Labs";This policy allows us to trust certi�cates from Bob(which are just messages signed with his PGP key):pgp:"0x01234567abcdefa0b1c2d3e4f5a6b7"ASSERTSpgp:"0xf0012203a4b51677d8090aabb3cdd9e2f"WHERE PREDICATE=regexp:"From: Alice";Together, this certi�cate and the deferring policyhave the same meaning as the non-deferring policygiven above. The query:pgp:"0xf0012203a4b51677d8090aabb3cdd9e2f"REQUESTS "From: AliceOrganization: Bob Labs" ;would succeed, butpgp:"0xf0012203a4b51677d8090aabb3cdd9e2f"REQUESTS "From: AliceOrganization: Matt Labs" ;andpgp:"0xf0012203a4b51677d8090aabb3cdd9e2f"REQUESTS "From: JohnOrganization: Bob Labs" ;would both fail.The preceding discussion shows how to use Policy-Maker to support authenticity of email messages. Notethat it can also support privacy of messages. By query-ing a PolicyMaker daemon, a sender can obtain the ap-propriate key with which to encrypt a message, as wellas the information about the recipient's security policyneeded to prepare the outgoing message.

3.2. A Certificate Revocation ServerPolicyMaker does not itself implement certi�catedistribution or revocation services (i.e., there are no\certi�cate revocation lists" built into the system).However, PolicyMaker can be used to specify servicesin which arbitrary certi�cate revocation, distribution,and freshness constraints are built into the policy. Itis possible, for example, for a certi�cate issuer to spec-ify authority structures that include not only the pub-lic key being certi�ed but the public key of a certi�-cate revocation service as well. The revocation ser-vice issues frequently broadcast certi�cates that con-tain predicates that are only satis�ed by non-revokedkeys. Other constraints, such as the required \fresh-ness" of the revocation certi�cates, can also be speci�edand may be based on application-based criteria (e.g.,high-valued transactions require more recently issuedassurance that the certi�cates are not revoked).Detailed example is omitted for brevity.
3.3. X.509/PGP Certificates as PolicyMaker Asser-

tionsIt is possible to exploit existing certi�cation infras-tructure and still use the policy speci�cation mecha-nisms of PolicyMaker. For example, if the majorityof certi�cates in a system are still in X.509 or PGPformat, it is simple to write an application-speci�cprogram that converts these certi�cates into Policy-Maker assertions. The predicate for such an assertionwould include routines that check the application's ac-tion string language for, e.g., the correct identity.
3.4. A Simple Workflow SystemA company policy regarding signatures on contracts,checks, bids, purchase orders, etc. might require k outof n people to sign for the company. The signers haveto be identi�able as legitimate co-signers for the vari-ous applications and corresponding quali�ers (such asdollar amount, liability, control, etc). The typical co-signature is a two-out-of-n protocol. In other cases,perhaps to recover an escrowed key that has been cov-ered using a k-out-of-n threshold scheme, k signaturesare needed.In the following example, the company policy isthat, for the purchase-order department to processpurchase orders for amounts less than or equal to$1,000,000, submitted orders must have the signa-tures of at least three of the company directors.The purchase-order application then requires that theamount, the organization, and the signers' names be

www.manaraa.com

present before it will verify that an order has been ap-propriately constructed.The top level policy states that the security certi�-cate authority key is allowed to create certi�cates inthe name of the company. (in the interest of read-ablity in the examples that follow, we use labels like\Security CA" in place of the actual public keys).POLICY ASSERTS Security_CA WHEREPREDICATE=regexp:"Organization: Bob Labs";This Security CA then creates a certi�cate thatstates that any group of at least three legitimate corpo-rate directors can sign purchase orders for ammountsnot exceeding $1,000,000.Security_CA ASSERTS"an AWKWARD program requiring at least3 keys directly certified by PersonnelKey"WHERE PREDICATE="an AWKWARD programthat checks that Amount <= $1,000,000";The PersonnelKey signs keys for the four directors,Jack, Joan, Matt, and Alice, certifying their names:PersonnelKey ASSERTS JackKey WHEREPREDICATE=regexp:"Signer's Name: Jack";PersonnelKey ASSERTS JoanKey WHEREPREDICATE=regexp:"Signer's Name: Joan";PersonnelKey ASSERTS MattKey WHEREPREDICATE=regexp:"Signer's Name: Matt";PersonnelKey ASSERTS AliceKey WHEREPREDICATE=regexp:"Signer's Name: Alice";When the purchase-order application receives a POof the form:...PO Amount: $800,000Signed By:Jack, Joan, Mattit checks the digital signatures and generates an appro-priate action string with which it queries PolicyMaker:{JackKey, JoanKey, MattKey}REQUESTS "PO amount = $800,000Organization: Bob LabsSigner's Name: JackSigner's Name: JoanSigner's Name: Matt";

4. Current Status and Future DirectionsWe have implemented a prototype PolicyMaker in-terpreter that includes a built-in regular expression andAWKWARD interpreter. External programs recognizeDSA and PGP-signed PolicyMaker assertions and canconvert X.509 and PGP certi�cate formats into Poli-cyMaker assertions for a simple Internet email appli-cation. Performance is reasonable, with chains severalnodes long evaluated in much less time than is requiredto verify the signatures on the certi�cates.The PolicyMaker approach has a number of advan-tages compared with the traditional, ad hoc trust man-agement approaches forced by such systems as X.509and PGP. First, because certi�cates and policies arebased on predicates written in a general programminglanguage, the trust language for an application domaincan be as simple or as complex as required withoutchanging the trust management system itself or theinterface to it. Second, trust descriptions can be inwhatever form naturally occurs in the application andcan be changed without altering the trust managementsystem. In an email system, they might consist of mes-sages header lines. In a system for signing and approv-ing contracts, they might consist of strings indicatingthe amounts and types of expenditures. Third, applica-tions that use PolicyMaker to implement trust manage-ment may be more secure, since the risks arising fromone level of indirection (mapping of identities to theirauthority) are eliminated. Finally, responsibility is sep-arated in a natural way. Applications are responsiblefor describing trusted actions and taking appropriateactions based on correct descriptions. Certi�cates andpolicies are responsible for describing who is trustedto perform actions according to the descriptions. Thetrust management system (PolicyMaker) is responsiblefor ensuring that described actions actually conform tothe policies and certi�cates but need not actually un-derstand them.Of course, PolicyMaker does not solve the entiretrust management problem or guarantee that systemsthat use it will be secure. Applications must de�ne ac-tion description languages that accurately re
ect thesecurity semantics of the application. The predicatesin policy and certi�cate assertions must be carefullywritten to re
ect the intentions of the policy. Becausethere are few restrictions on predicates, it is possibleto construct policies that have unfortunate or unex-pected consequences. However, because PolicyMaker'strust management functions are encapsulated in only afew components (the certi�cates, policies, and applica-tion's action string management functions), it is proba-bly easier to verify or at least debug security properties

www.manaraa.com

of systems than it is in traditional approaches in whichtrust management is spread across the entire system.Our near-term plan for PolicyMaker has two impor-tant components. On one front, we plan to developa formal model of trust management in which to in-vestigate the power and limitations of the PolicyMakerapproach in a mathematically rigorous manner. Simul-taneously, we plan to experiment with our prototypeimplementation of the PolicyMaker system in diverseapplications contexts. We also believe PolicyMakerwill make a good framework for certi�cate distribution(e.g., a certi�cation server could provide appropriatecerti�cates based on provided policy assertions). Bothformal and experimental results will guide the develop-ment of future versions of the system.In conclusion, PolicyMaker introduces the general\trust management layer" at what appears to be theright level of abstraction. An important bene�t is that,by exposing a trust management interface, it requiresdesigners and implementers of secure services and sys-tems to consider trust management explicitly. It en-courages the use of sophisticated notions of securitywhen appropriate to the context, and it enforces thenecessary coordination of the design of policy, creden-tials, and trust relationships.5. AcknowledgementsWe are grateful to Brian Kernighan for implement-ing AWKWARD and to Mike Reiter and Ron Rivestfor their helpful comments on earlier drafts.References[1] A. V. Aho, B. W. Kernighan, and P. J.Weinberger, The AWK Programming Language,Addison-Wesley, Reading, 1988.[2] J. Gosling and H. McGilton, The Java LanguageEnvironment, A White Paper, Sun Microsystems,Inc., Mountain View, 1995.[3] Information Technology { Open Systems Intercon-nection { The Directory:Authentication Frame-work, Recommendation X.509, ISO/IEC 9594-8.[4] International Telegraph and Telephone Consulta-tive Committee (CCITT). The Directory { Au-thentication Framework, Recommendation X.5091993 update.[5] John K. Ousterhout, TCL and the TK Toolkit,Addison-Wesley, Reading, 1994.

[6] E. Wobber and M. Abadi and M. Burrows andB. Lampson, \Authentication in the Taos Oper-ating System," ACM Transactions on ComputerSystems, 12(1):3{32, February 1994.[7] P. Zimmermann, PGP User's Guide, MIT Press,Cambridge, 1994.Appendix: PolicyMaker SyntaxThe basic grammar accepted by the PolicyMaker in-terpreter follows. Terminals are given in UPPERCASE.assertion : source ASSERTSauthstruct WHEREfilterlist SEMICOLON| source ASSERTSauthstruct SEMICOLONquery : keylist REQUESTSstring condition SEMICOLONsource : keyid| POLICYkeyid : system COLON stringauthstruct : filterprog| keyidfilterlist : filtername EQUALSfilterprog| filtername EQUALSfilterprog COMMA filterlistfiltername : ANNOTATOR| PREDICATE| COMMENTARY| APPLICATIONfilterprog : languageCOLON stringlanguage : AWKWARD| REGEXPkeylist : keyid| keylist COMMA keyidcondition : <nullstring>| WHERE filterprog

